Rotation

I. Kinematics
 - Angular analogs

II. Dynamics

- Torque and Rotational Inertia
III. Work and Energy
IV. Angular Momentum
- Bodies and particles
V. Elliptical Orbits

	The student will be able to:	HW:
1	Define angular position, angular displacement, angular velocity, angular acceleration and solve related problems in fixed axis kinematics.	$1-5$
2	Define torque, lever arm (moment arm), and solve related problems.	$6-8$
3	Define rotational inertia (moment of inertia), use provided formulas of such to solve related problems.	$9-11$
4	Solve rotational dynamics problems using relation between torque, rotational inertia, and angular acceleration for fixed axis.	$12-18$
5	Define rotational kinetic energy and work and solve related problems.	$19-22$
6	Define angular momentum and angular impulse and solve related problems.	$23-26$
7	State and apply conservation of angular momentum to solve related problems.	
8	Analyze orbital motion, including elliptical orbits, using conservation of angular momentum and energy.	$27-30$

Consider two rotating objects - which is "moving faster"? The ends of the two rods have the same speed (in m / s), but the smaller rod is spinning more rapidly and has a greater angular speed (in deg/s or radians/s). This is rotational kinematics - the mathematical description of rotating objects.

360° in 24 s
15 degrees/sec

360° in 12 s
30 degrees/sec

The ends of the two rods each happen to move a distance of 2 meters each second in this example and so the "linear speed" of each end is $2 \mathrm{~m} / \mathrm{s}$.

However, the center of each object moves zero distance per second and so the speed of the "whole object" for each one is zero in a sense.

$$
\begin{gathered}
360^{\circ} \text { in } 24 \mathrm{~s} \\
15 \text { degrees } / \mathrm{sec}
\end{gathered}
$$

$$
360^{\circ} \text { in } 12 \mathrm{~s}
$$

Rotational or "Angular" Kinematics:

The angle through which each object turns is different each second. The smaller rod turns through an angle twice as large in an equal time. The angular speed of the shorter rod is twice that of the longer.

The angular speed describes the whole object - not the center, or the end, but rather the whole thing. This value is usually given in radians per second instead of degrees per second. (2π radians $=360$ degrees $)$

15 degrees $/ \mathrm{s}=0.26$ radians $/ \mathrm{s}$
30 degrees $/ \mathrm{s}=0.52$ radians $/ \mathrm{s}$

$$
\begin{array}{ll}
v_{x}=v_{x 0}+a_{x} t & \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2} & \omega=\omega_{0}+\alpha t \\
v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) & \\
\vec{a}=\frac{\sum \vec{F}}{m}=\frac{\vec{F}_{n e t}}{m} & \vec{\alpha}=\frac{\sum \vec{\tau}}{I}=\frac{\vec{\tau}_{n e t}}{I} \\
\vec{p}=m \vec{v} & \begin{array}{l}
\text { For every definition and } \\
\text { equation concerning } \\
\text { "regular" or "linear" } \\
\text { motion there is a similar }
\end{array} \\
\Delta \vec{p}=\vec{F} \Delta t & \Delta L=I \omega \\
\begin{array}{l}
\text { and analogous definition } \\
\text { and equation concerning } \\
\text { rotational motion! }
\end{array} \\
K=\frac{1}{2} m v^{2} & K=\frac{1}{2} I \omega^{2}
\end{array}
$$

Angular position is an indicator of the orientation of an object relative to a reference. Symbol: θ
Angular displacement is the net change in angular position.
Symbol: $\Delta \theta$ or θ
Angular velocity is the rate of change in angular position.
Symbol: ω
Angular speed is the magnitude of angular velocity.
Symbol: ω
Angular acceleration is the rate of change in angular velocity. Symbol: α

Except for angular speed, all of these are vectors. Direction can be described as clockwise (-) or counterclockwise (+) - often abreviated CW or CCW.

Translation
position \vec{r}
velocity $\vec{v}=\frac{\Delta \vec{r}}{\Delta t}$
acceleration $\quad \vec{a}=\frac{\Delta \vec{v}}{\Delta t}$
constant acceleration:

$$
\left\{\begin{aligned}
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v & =v_{0}+a t \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}\right.
$$

Rotation angular position
$\vec{\theta}$

$$
\vec{\omega}=\frac{\Delta \vec{\theta}}{\Delta t}
$$

angular acceleration $\vec{\alpha}=\frac{\Delta \vec{\omega}}{\Delta t}$
constant angular acceleration:

$$
\begin{aligned}
\theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
\omega & =\omega_{0}+\alpha t \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{aligned}
$$

Angular speed of entire disk:

Linear speed of yellow dot:

$$
\begin{aligned}
& v=\frac{\Delta d}{\Delta t} \\
& v=\frac{2 \pi r}{T}
\end{aligned}
$$

Angular speed of entire disk:

Linear speed of yellow dot:

$$
\begin{aligned}
& \omega=\frac{\Delta \theta}{\Delta t} \\
& \omega=\frac{2 \pi}{T}
\end{aligned}
$$

$$
\begin{aligned}
& v=\frac{\Delta d}{\Delta t} \\
& v=\frac{2 \pi r}{T} \\
& v=\omega r
\end{aligned}
$$

Angular displacement

 and angular acceleration of entire disk:

Linear distance and acceleration of yellow dot:

$$
d=\theta r
$$

$$
a=\alpha r
$$

Pulley rotating with parameters:

$$
\theta, \omega, \alpha
$$

The linear motion of the rope is equivalent to the motion of a point on the pulley's circumference.

Distance, speed, and acceleration of the rope:

$$
\begin{aligned}
& d=\theta R \\
& v=\omega R \\
& a=\alpha R
\end{aligned}
$$

Distance, speed, and acceleration of the

Rolling wheel rotates with parameters: θ, ω, α center of the wheel:

