Vector Addition and Subtraction

Learning to add all over again . . .

Vectors – 2-D Kinematics

- I. Vector Addition/Subtraction- Graphical
- II. Vector Components
 - Applications
- III. Vector Addition/Subtraction
 - Numerical
- IV. Relative Motion
- V. Projectile Motion

	The student will be able to:	HW:
1	Add or subtract vectors graphically and determine a vector's opposite.	1, 2
2	Calculate the components of a vector given its magnitude and direction.	3, 4
3	Calculate the magnitude and direction of a vector given its components.	5 - 9
4	Use vector components as a means of analyzing/solving 2-D motion problems.	10 - 13
5	Add or subtract vectors analytically (using trigonometric calculations).	14, 15
6	Use vector addition or subtraction as a means of solving relative velocity problems.	16 - 20
7	State the horizontal and vertical relations for projectile motion and use the same to solve projectile problems and apply vector properties to projectile motion.	21 - 38

Vector Addition

- It is necessary to add vectors whenever two or more vectors occur either in sequence or simultaneously.
- The result of adding two vectors is a third vector that is equivalent to the combination of the two.
- To solve a vector addition problem both the *magnitude* and *direction* of the resulting vector must be found.

Suppose a person undergoes two consecutive displacements: $\mathbf{d}_1 = 3.00 \text{ m}$, 48.2° and $\mathbf{d}_2 = 2.00 \text{ m}$, 299.0° . What is the resulting displacement of this person?

The result is the displacement shown in red:

This sum vector is sometimes called the *resultant*. Its magnitude and direction can be determined from the geometric figure.

This sum vector is sometimes called the *resultant*. Its magnitude and direction can be determined from the geometric figure.

Therefore the sum of $\mathbf{d}_1 = 3.00 \text{ m}$, 48.2° and $\mathbf{d}_2 = 2.00 \text{ m}$, 299.0° is 3.00 m, 9.3° . This is a displacement that equals the combination of the two given displacements "put together".

 $(3.00 \text{ m}, 48.2^{\circ}) + (2.00 \text{ m}, 299.0^{\circ}) = (3.00 \text{ m}, 9.3^{\circ})$

Rule for Vector Addition

To add vectors, place the vectors head-to-tail. The resultant sum is the vector that extends from the tail of the first to the head of the last.

The graphical method of adding vectors (using ruler and protractor):

- 1. Draw and carefully measure a scale diagram of the vectors placed head to tail.
- 2. Draw and measure the resultant's length and angle.
- 3. Give answer magnitude and direction. (Adjust for the chosen scale of the diagram if necessary.)

Try these problems using the graphical approach – draw and measure: 5 I = 105 m 140 0°

1. $\mathbf{A} = 7.00 \text{ cm}, 140.0^{\circ}$ $\mathbf{B} = 6.00 \text{ cm}, 270.0^{\circ}$ $\mathbf{A} + \mathbf{B} = ?$ 5. $I = 105 \text{ m}, 140.0^{\circ}$ $J = 35.0 \text{ m}, 320.0^{\circ}$ I + J = ?

2. $C = 50.0 \text{ km}, 325.0^{\circ}$ $D = 100.0 \text{ km}, 70.0^{\circ}$ C + D = ? D + C = ? 6. $\mathbf{K} = 40.0 \text{ m/s}, 180.0^{\circ}$ $\mathbf{L} = 40.0 \text{ m/s}, 0.0^{\circ}$ $\mathbf{K} + \mathbf{L} = ?$

3. $\mathbf{E} = 3.70 \text{ m/s}, 310.0^{\circ}$ $\mathbf{F} = 7.90 \text{ m/s}, 90.0^{\circ}$ $\mathbf{E} + \mathbf{F} = ?$ 7. $\mathbf{M} = 5.70 \text{ cm}, 320.0^{\circ}$ $\mathbf{N} = 4.90 \text{ cm}, 90.0^{\circ}$ $\mathbf{O} = 6.00 \text{ cm}, 210.0^{\circ}$ $\mathbf{M} + \mathbf{N} + \mathbf{O} = ?$

4. $G = 16 \text{ m/s}^2, 45.0^{\circ}$ $H = 3.0 \text{ m/s}^2, 45.0^{\circ}$ G + H = ?

8. $\mathbf{P} = 10.0 \text{ m}, 90.0^{\circ}$ $\mathbf{Q} = 7.50 \text{ m}, 0.0^{\circ}$ $\mathbf{P} - \mathbf{Q} = ?$

3. $C = 50.0 \text{ km}, 325.0^{\circ}$ $D = 100.0 \text{ km}, 70.0^{\circ}$ $C + D = 99.6 \text{ km}, 41.0^{\circ}$

4. $\mathbf{E} = 3.70 \text{ m/s}, 310.0^{\circ}$ $\mathbf{F} = 7.90 \text{ m/s}, 90.0^{\circ}$

 $E + F = 5.60 \text{ m/s}, 64.9^{\circ}$

Order of Vector Addition

The order of addition does not affect the resultant! (commutative property)

To add vectors, always place the vectors head-to-tail. But the order of placeement will not affect the answer!

Collinear Vectors

Vectors that lie on the same line may be added easily using "regular addition" – however, a vector that points in an opposite direction must be considered negative.

4.
$$G = 16 \text{ m/s}^2, 45.0^{\circ}$$

 $H = 3.0 \text{ m/s}^2, 45.0^{\circ}$
 $G + H = 19.0 \text{ m/s}^2, 45.0^{\circ}$

$$\Sigma$$
 K 5

5.
$$I = 105 \text{ m}, 140.0^{\circ}$$

 $J = 35.0 \text{ m}, 320.0^{\circ}$
 $I + J = 70.0 \text{ m}, 140.0^{\circ}$

6.
$$K = 40.0 \text{ m/s}, 180.0^{\circ}$$

 $L = 40.0 \text{ m/s}, 0.0^{\circ}$
 $K + L = 0$

8.
$$\mathbf{P} = 10.0 \text{ m}, 90.0^{\circ}$$

 $\mathbf{Q} = 7.50 \text{ m}, 0.0^{\circ}$
 $\mathbf{P} - \mathbf{Q} = 12.5 \text{ m}, 126.9^{\circ}$

$$\mathbf{R} = 20.0 \text{ m}, 270.0^{\circ}$$

 $\mathbf{S} = 10.0 \text{ m}, 30.0^{\circ}$
 $\mathbf{R} - \mathbf{S} = ?$

To subtract a vector, add its opposite.

A vector's opposite has the same magnitude but opposite direction (differs by 180°).

$$R = 20.0 \text{ m}, 270.0^{\circ}$$

 $S = 10.0 \text{ m}, 30.0^{\circ}$
 $-S = 10.0 \text{ m}, 210.0^{\circ}$
 $R - S = R + (-S)$
 $R - S = 26.5 \text{ m}, 109.1^{\circ}$

To subtract a vector, add its opposite.

A vector's opposite has the same magnitude but opposite direction (differs by 180°).

$$\mathbf{R} = 20.0 \text{ m}, 270.0^{\circ}$$

 $\mathbf{S} = 10.0 \text{ m}, 30.0^{\circ}$
 $-\mathbf{S} = 10.0 \text{ m}, 210.0^{\circ}$
 $\mathbf{R} - \mathbf{S} = \mathbf{R} + (-\mathbf{S})$
 $\mathbf{R} - \mathbf{S} = 26.5 \text{ m}, 250.9^{\circ}$
 $\mathbf{S} - \mathbf{R} = ?$

$$\mathbf{R} = 20.0 \text{ m}, 270.0^{\circ}$$
 $-\mathbf{R} = 20.0 \text{ m}, 90.0^{\circ}$
 $\mathbf{S} = 10.0 \text{ m}, 30.0^{\circ}$
 $\mathbf{R} - \mathbf{S} = \mathbf{R} + (-\mathbf{S})$
 $\mathbf{R} - \mathbf{S} = 26.5 \text{ m}, 250.9^{\circ}$
 $\mathbf{S} - \mathbf{R} = \mathbf{S} + (-\mathbf{R})$
 $\mathbf{S} - \mathbf{R} = 26.5 \text{ m}, 70.9^{\circ}$

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...

...the sum extends along a diagonal outward from the tails.

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...

...the difference is along a diagonal from head to head.

Parallelogram Rule

Vector addition and subtraction may also be visualized by the parallelogram formed by placing tail-to-tail...

...the difference is along a diagonal from head to head.

