Fluids

- I. Statics
 - density, specific gravity
 - pressure, Pascal's principle
 - buoyancy, Archimedes principle

II. Dynamics

- laminar and turbulent flow
- flow rate and continuity
- Bernoulli's principle and equation

	The student will be able to:	HW:
1	Define and apply concepts of density, specific gravity, and pressure and solve related problems.	1 – 6
2	Define, distinguish, and apply concepts of absolute, atmospheric, and gauge pressure and solve related problems including application of Pascal's principle and relationship with depth, density, and gravitational field.	7 – 14
3	Define and apply Archimedes principle and the concept of buoyancy and solve related problems.	15 – 19
4	Define and apply the concept of continuity of flow and conservation of matter and solve related problems.	20-21
5	State and apply Bernoulli's principle and equation and the conservation of energy and solve related problems.	22 – 29

Fluid Basics

- Matter can exist in various forms solid, liquid, gas, and plasma.
- The ability to flow is the defining property of a fluid. Gases and liquids can flow and are fluid.
- Liquid fluids are not significantly compressible and maintain are fairly constant volume.
- A gas is fluid in the sense that it can flow but it is readily compressible (or expandable) and its volume can vary significantly depending on circumstance.

Density

For a given type of material in particular conditions the mass per unit volume will tend to be uniform throughout. This observation leads to the concept of density – an intrinsic property of the material.

$$\rho = \frac{m}{V}$$

where: $\rho = \text{density}$ V = a volume of space m = mass of matter withinthat volume

	Density (kg/m ³)	Density (g/cm ³)	Specific Gravity
Helium	0.18	0.00018	0.00018
Air	1.3	0.0013	0.0013
Wood	300 - 900	0.3 - 0.9	0.3 - 0.9
Gasoline	680	0.68	0.68
Ice	917	0.917	0.917
Water	10 <u>0</u> 0	1.00	1.00
Granite	2700	2.7	2.7
Aluminum	2700	2.70	2.70
Iron	7800	7.8	7.8
Lead	11300	11.3	11.3
Mercury	13600	13.6	13.6
Gold	19300	19.3	19.3

Pressure

Pressure is a scalar measure of the amount of force per unit area acting perpendicular to a real or imaginary surface.

$$P = \frac{F}{A}$$

where: P = pressure A = an area of a surface F = amount of force acting perpendicular to the surface

Atmospheric Pressure

- Molecules and atoms in a gaseous state bound by a gravitational field constitute the atmosphere.
- Because these particles are in a constant state of motion there is a force acting on any solid or liquid surface due to the impacts of the atoms and molecules.
- Atmospheric pressure is a measure of the net effect of the gaseous matter impacting and rebounding off of any exposed surface.

Pressure Units

- th Pascal:
- the bar: 1
- pounds per square inch:
- millimeters of mercury:
- the torr:
- the atmosphere:

- $1 \text{ Pa} = 1 \text{ N/m}^2$
- 1 bar = 100000 Pa
- $1 \text{ psi} = 1 \text{ lbf/in}^2$
- 1 mm-Hg = 133 Pa
- 1 torr = 1 mm-Hg
- 1 atm = 101.3 kPa
- 1 atm = 14.7 psi
- 1 atm = 760 torr

image: wikipedia

14000 ft

9000 ft

1000 ft

image: wikipedia

images: Cmglee, wikipedia

Pressure Activity

- Work with a partner. Connect two syringes of unequal diameter with a piece of tubing.
- Does moving one plunger cause the other to move? One person hold their plunger in place while the other moves their plunger.
- Add a couple of milliliters of water inside the syringes <u>and</u> the tubing and <u>remove all air</u> (figure it out!) so that only water is enclosed.
- Repeat the experiments above. Compare the amount of force and distance moved on each side. Can you explain?

© Matthew W. Milligan

	The student will be able to:	HW:
1	Define and apply concepts of density, specific gravity, and pressure and solve related problems.	1-6
2	Define, distinguish, and apply concepts of absolute, atmospheric, and guage pressure and solve related problems including application of Pascal's principle and relationship with depth, density, and gravitational field.	7 – 14
3	Define and apply Archimedes principle and the concept of buoyancy and solve related problems.	15 – 19
4	Define and apply the concept of continuity of flow and conservation of matter and solve related problems.	20-21
5	State and apply Bernoulli's principle and equation and the conservation of energy and solve related problems.	22 – 29

Fluid Statics

- Although the matter is always in motion on the atomic level, if there is no flow or organized motion a fluid is at rest and it is a system of mass at equilibrium.
- Static fluids have various important properties. If fluid motion is slow and steady the same properties may be reasonably assumed true.
- Pascal's principle states that a certain amount of pressure applied to a confined fluid increases the pressure throughout the fluid by the same amount.

Compressibility

- Gases that undergo a change in pressure can have a drastically altered volume and are said to be compressible. Increased pressure reduces volume and the gas is compressed in size.
- Liquids that undergo a change in pressure will show an extremely small change in volume – usually insignificant. For this reason liquids are usually assumed to be **incompressible**. Changes in pressure have no perceptible effect on the volume and it remains essentially constant.

Absolute vs. Gauge Pressure

- Because the atmosphere is all around us its pressure is a constant "presence".
- In many situations what matters is the *difference* from this atmospheric "norm".
- A pressure gauge such as that for measuring a tire has a mechanism that responds to the difference of pressure within the tire to that out side of the tire this is called "gauge pressure".
- "Absolute pressure" includes the effect of atmosphere often found by adding gauge pressure to atmospheric pressure.

Pressure vs. Gravity

Pressure within a fluid relates to gravity and depth. The increase in pressure is directly proportional to density of the fluid and depth:

$$P = P_0 + \rho g h$$

$$\Delta P = \rho g h$$

where: P = absolute pressure at depth h $P_0 =$ pressure at surface $\rho =$ density of fluid g = gravitational field strength h = depth

	The student will be able to:	HW:
1	Define and apply concepts of density, specific gravity, and pressure and solve related problems.	1-6
2	Define, distinguish, and apply concepts of absolute, atmospheric, and guage pressure and solve related problems including application of Pascal's principle and relationship with depth, density, and gravitational field.	7 – 14
3	Define and apply Archimedes principle and the concept of buoyancy and solve related problems.	15 – 19
4	Define and apply the concept of continuity of flow and conservation of matter and solve related problems.	20 – 21
5	State and apply Bernoulli's principle and equation and the conservation of energy and solve related problems.	22 – 29

Archimedes Principle & Buoyancy

- Anything in a fluid experiences a force related to the fluid's pressure and the area of contact.
- A floating object on the surface is held up by this force called buoyancy.
- By Archimedes principle, the volume of water displaced by a floating object has a mass equal to that of the object.
- If an object is submerged there is still a force of buoyancy, whether it floats or not.
- The force of buoyancy is the net force of a fluid acting on an object in a static situation.

Buoyancy

An object in a fluid experiences a force of buoyancy related to the density of the fluid, volume, and gravitational field strength:

$$F_b = \rho V g$$

where:
$$F_b$$
 = force of buoyancy
 ρ = density of fluid
 V = volume of displaced fluid
 g = gravitational field strength

Understanding the "displaced volume":

$$F_b = \rho V g \qquad \qquad V = ?$$

floating object: V = only the volume below the surface submerged object: V = entire volume of object

© Matthew W. Milligan