Mini-Lab: Magnetic Field of a Current

1. Goal: Demonstrate the field of a long straight current.
2. Use a compass to align a jumper cable with magnetic north and tape each end to the table stretched taut.
3. Prepare, but do not complete, a circuit with this wire, an ammeter (use the 10 A input), and a 6 V battery.
4. Support the compass a few centimeters above the wire's center and then complete the circuit briefly - only a few seconds. Record: height above the wire, deflection angle, and current. Repeat at a different distance - try doubling!
5. Use earth's field and deflection of compass to find the apparent field of the wire - compare to the field found by theoretical formula. Determine the percent difference.

earth's field:
horizontal component $=22 \mu \mathrm{~T}$
(parallel to wire)
data:
$I=3.95 \mathrm{~A}$
$\theta=42^{\circ}$
$h=4.1 \mathrm{~cm}$

$$
B_{\text {wire }}=? ?
$$

Find $B_{\text {wire }}$ two ways: use deflection θ of compass and earth's known field, use current I and distance h and equation from theory.

