Mini-Lab: EMF and Internal Resistance

- 1. Goal: Determine the emf and internal resistance of the battery using only voltmeter and circuit board.
- 2. Adjust the multimeter so that it is measuring voltage (acting as a voltmeter).
- 3. Connect the voltmeter to the terminals of the 3 V battery binding posts 1 and 35.
- 4. Connect an external resistance of some amount and record the resulting measured voltage at the terminals.
- 5. Use external resistances of the following amounts: $R = 22 \text{ k}\Omega$, 119 Ω , 68 Ω , 51 Ω , 35.5 Ω , 20 Ω , 10 Ω .
- 6. Use *all* of your data to find best values for *emf* and *r*.
- 7. Challenge: How can a linear graph be created and used?

Using the multimeter as a voltmeter:

Selector dial <u>must</u> be set for voltage

Leads <u>must</u> connect to these two terminals (COM is common to all measurements made)

Using the multimeter as a voltmeter:

This reading indicates that the electric potential at the positive terminal of the battery is 1.531 volts greater than it is at the negative terminal.

Measure the terminal voltage of the battery.

Vary the external resistance *R* and note the resulting voltage *V*; record both values.

