Optics and Images

Lenses and Mirrors

Light: Interference and Optics

I. Light as a Wave

- wave basics review
- electromagnetic radiation
II. Diffraction and Interference
- diffraction, Huygen's principle
- superposition, interference
- standing waves, slits \& gratings

III.Geometric Optics

- reflection, refraction, Snell's Law
- images, lenses, and mirrors

	The student will be able to:	HW:
2	Model light and other types of electromagnetic radiation as a transverse wave of electric and magnetic fields and analyze graphs and/or functions to solve related problems and explain related phenomena such as polarization, absorption, production, intensity, etc.	$1-5$
3	Model diffraction and interference of light involving slits or gratings by Huygen's principle and analyze and solve problems relating geometry of openings to patterns of interference.	$6-18$
4	State and apply laws of reflection and refraction, Snell's Law, and solve related problems and/or describe qualitatively the phenomena of absorption, transmission, and reflection of light undergoing a change in medium.	$19-25$
	Apply the ray model of light to explain and analyze formation of real and virtual images by plane, concave, and convex mirrors and solve related problems involving object and image distance, magnification, focal length and/or radius of curvature.	$26-31$
5	Apply the ray model of light to explain and analyze formation of real and virtual images by converging or diverging thin lenses and solve related problems involving object and image distance, magnification, focal length and/or radius of curvature.	$32-36$

EMR - Media Boundaries

- When light encounters a change in medium several phenomena are possible: reflection, transmission, and absorption.
- Reflection: the wave is redirected at the boundary but remains in the original medium.
- Transmission: the wave continues on at the boundary, passing into and through the new medium.
- Absorption: the wave's amplitude is reduced as energy is transferred and transformed in the new medium.

Diffuse reflection occurs off a rough boundary at random, unpredictable angles in all directions.

Specular

Diffuse

Law of Reflection

$$
\theta_{i}=\theta_{r}
$$

$\theta_{i}=$ angle of incidence $\theta_{r}=$ angle of reflection
(Incident means headed toward the boundary.)

Law of Reflection

$$
\theta_{i}=\theta_{r}
$$

$\theta_{i}=$ angle of incidence $\theta_{r}=$ angle of reflection

Both angles are measured relative to a line that is normal to the surface and are in the same plane.

Formation of images...

© Matthew W. Milligan

© Matthew W. Milligan

Bending of light or EMR at a boundary is called refraction.

Reflection,
Transmission, and Refraction

Snell's Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$\theta_{1}=$ angle of incidence $\theta_{2}=$ angle of refraction $n=$ index of refraction

Snell's Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

n_{1}

$$
\begin{aligned}
& \theta_{1}=\text { angle of incidence } \\
& \theta_{2}=\text { angle of refraction } \\
& n=\text { index of refraction }
\end{aligned}
$$

The index of refraction is an inherent characteristic of the materials on either side of the boundary.

Medium	Index of Refraction
vacuum	1
air	1.0003
ice	1.31
water	1.33
ethyl alcohol	1.36
fused quartz	1.46
vegetable oil	1.47
acrylic, plexiglas	1.50
crown glass	1.52
flint glass	1.62
sapphire	1.77
diamond	2.42

Index of Refraction

- The index of refraction is sometimes described as the "optical density" of a material. It tends to be higher in more dense materials.
- Defining $n=1$ for a vacuum it can be shown by Huygen's principle that the index of refraction is the ratio of speed of light in a vacuum, c to that within the material, v.
$n=-$
v
- The speed of light is inversely proportional to the index of refraction.

Medium	$n=c / v$	speed $(\mathrm{m} / \mathrm{s})$
vacuum	1	299792458
air	1.0003	$2997 \underline{0} 0000$
ice	1.31	229000000
water	1.33	225000000
ethyl alcohol	1.36	$22 \underline{0} 000000$
fused quartz	1.46	205000000
vegetable oil	1.47	204000000
acrylic, plexiglas	1.50	$20 \underline{0} 000000$
crown glass	1.52	197000000
flint glass	1.62	185000000
sapphire	1.77	169000000
diamond	2.42	124000000

Snell's Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$\theta_{1}=$ angle of incidence $\theta_{2}=$ angle of refraction $n=$ index of refraction

Typically there will be partial reflection and partial transmission.

Snell's Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$\theta_{1}=$ angle of refraction $\theta_{2}=$ angle of incidence $n=$ index of refraction

Typically there will be partial reflection and partial transmission.

Relative Intensity:

In general, as the angle of incidence increases, the amount of reflected energy increases and the amount of transmitted energy decreases.

Relative Intensity:

In general, as the angle of incidence increases, the amount of reflected energy increases and the amount of transmitted energy decreases.

Total Internal Reflection

When light passes from a higher to a lower index of refraction the amount of transmitted energy drops to zero for angles of incidence greater than or equal to
 the "critical angle". In this special case there is total reflection. The angle of refraction has no real solutions in Snell's Law for this situation.

© Matthew W. Milligan

© Matthew W. Milligan

Dispersion

- The index of refraction is primarily a function of the properties of a material.
- However, the index also has a very slight dependence upon frequency and wavelength.
- The value of n increases as frequency increases and wavelength decreases. Therefore violet light refracts more than red.
- The variance of n is typically less than 1% over the range of visible light frequencies. e.g. for water $1.330<n<1.339$

θ
$\phi=4 \sin ^{-1}(\sin \theta / n)-2 \theta$
(for water $n=1.33$) peak of curve:
$\phi=42.5^{\circ} \quad \theta=59.6^{\circ}$
observer sees rainbow 42 degrees from the anti-solar point - light coming from raindrops at that location

width of the rainbow by previous equation is $\approx 1.3^{\circ}$, consistent with the picture radii 3.30 in and 3.45 in such that $42.5^{\circ} \cdot(3.45-3.3) / 3.45 \approx 1.8^{\circ}$
© Matthew W. Milligan

