Electrostatics

I. Charge and Force

- concepts and definition
- Coulomb' s Law
II. Electric Fields
- effect on charge
- production by charge
III. Potential
- relation to work, energy, field
- association with charge

	The student will be able to:	HW:
1	Relate electrical phenomena to the motion and position of the fundamental charge found on electrons and protons and recognize the coulomb as the SI unit of charge and e as the elementary quantum of charge.	$1-5$
2	State and apply Coulomb' s Law to solve problems relating force, charge, and distance.	$6-13$
3	Define and apply the concept of an electric field and sketch field lines for a given distribution of charge and solve for the electric field strength at any point relative to a collection of point charges.	$14-22$
4	Define electric potential and potential difference and the volt and solve problems relating electric potential to charge, work or energy, electric field strength and distance.	$23-32$
5	Define and calculate potential and isolines for common charge distributions and solve related problems.	$33-38$

Electric Potential vs. Source Charge

where: $\quad V=$ electric potential $r=$ distance from center of charge
$q=$ source of field and potential
note: q must be "point-like" or have spherical symmetry

Equipotentials around a charge of +2 nC

Equipotentials around a charge of -3 nC

© Matthew W. Milligan

Equipotentials around a charge of +2 nC

Equipotentials around a charge of -3 nC

Electric Potential Reference Level

What happens to the value of V as the value of r increases? Where is V equal to zero?
At great distances from a charge the electric potential defined by this formula drops to essentially zero. The reference for potential is r equal infinity!

Values calculated with this formula are relative to great distances from the charge.

How much potential energy?

The two charge system has 90 nJ potential energy.

$$
\left(U=q V=3 \mathrm{nC}^{*} 30 \mathrm{~V}=90 \mathrm{~nJ}\right)
$$

How much change in potential energy?

The change in potential energy is +45 nJ . $\left(\Delta U=q \Delta V=0.5 \mathrm{nC}^{*}(-45=(-135 \mathrm{~V}))=90 \mathrm{~nJ}\right)$

