# Electrostatics

- I. Charge and Force
  - concepts and definition Coulomb's Law
- II. Electric Fields
  - effect on charge
  - production by charge

### **III.** Potential

- relation to work, energy, field
- association with charge

|   | The student will be able to:                                                                                                                                                                                         | HW:     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1 | Relate electrical phenomena to the motion and position of the fundamental charge found on electrons and protons and recognize the coulomb as the SI unit of charge and <i>e</i> as the elementary quantum of charge. | 1 – 5   |
| 2 | State and apply Coulomb's Law to solve problems relating force, charge, and distance.                                                                                                                                | 6 – 13  |
| 3 | Define and apply the concept of an electric field and sketch field lines<br>for a given distribution of charge and solve for the electric field<br>strength at any point relative to a collection of point charges.  | 14 – 22 |
| 4 | Define electric potential and potential difference and the volt and solve problems relating electric potential to charge, work or energy, electric field strength and distance.                                      | 23 – 32 |
| 5 | Define and calculate potential and isolines for common charge distributions and solve related problems.                                                                                                              | 33 - 38 |

### Electric Potential vs. Source Charge



where: V = electric potential r = distance from center of charge q = source of field and potential note: q must be "point-like" or have spherical symmetry









## Electric Potential Reference Level

$$V = k \frac{q}{r}$$

What happens to the value of *V* as the value of *r* increases? Where is *V* equal to zero?

At great distances from a charge the electric potential defined by this formula drops to essentially zero. The reference for potential is *r* equal infinity!

Values calculated with this formula are *relative* to great distances from the charge.



