Thermodynamics

- I. Internal Energy
 - energy of atoms and molecules
 - thermal equilibrium
 - ideal gas law
 - temperature & kinetic theory
- II. Heat
 - thermal conductivity
 - 1st law of thermodynamics
 - heat engines & cycles
 - 2nd law of thermodynamics

	The student will be able to:	HW:
1	Define and apply concepts of internal energy, thermal equilibrium, zeroth law of thermodynamics, and temperature.	1-3
2	State and apply the ideal gas law in terms of Boltzmann's constant and solve related problems with variables pressure, volume, and temperature.	4 – 7
3	State and apply the stipulations of the kinetic theory of gases and solve related problems involving pressure, force, kinetic energy, Boltzmann's constant, temperature, and speed distributions of particles	8-13
4	Define and apply the concept of thermal conductivity and solve related problems involving heat flow.	14 – 19
5	State and apply the first law of thermodynamics and solve related problems including work, heat, heat engines & cycles, P - V diagrams.	20-26
6	Define and describe entropy; state and apply qualitatively the second law of thermodynamics.	27-30

1st Law of Thermodynamics

Recognizing that heat is the transfer of internal energy and work is also a form of energy transfer, a useful form of conservation of energy becomes:

$$\Delta U = Q + W$$

where: U = internal energy Q = heat (into the system)W = work done on the system

1st Law of Thermodynamics

Recognizing that heat is the transfer of internal energy and work is also a form of energy transfer, a useful form of conservation of energy becomes:

$$\Delta U = Q - W$$

where: U = internal energy Q = heat (into the system)W = work done by the system

case the pressure is steady at atmospheric (plus a small amount related to the weight of piston). If gas is cooled and pressure remains constant, volume, temperature, and internal energy all decrease. © Matthew W. Milligan

surroundings at all times.

Note: in this hypothetical the piston is either thermally insulated or moved so quickly there is no time for heat to flow. Work done *on* the gas equates with an *increase* in temperature, pressure, and internal energy as volume decreases.

image credit: Luc1992, Wikipedia

image credit: en.User.Duk, Wikipedia

image credit: Keta, Wikipedia

image credit: Keta, Wikipedia