Thermodynamics

I. Internal Energy

- energy of atoms and molecules
- thermal equilibrium
- ideal gas law
- temperature \& kinetic theory
II. Heat
- thermal conductivity
- $1^{\text {st }}$ law of thermodynamics
- heat engines \& cycles
- $2^{\text {nd }}$ law of thermodynamics

	The student will be able to:	HW:
1	Define and apply concepts of internal energy, thermal equilibrium, zeroth law of thermodynamics, and temperature.	$1-3$
2	State and apply the ideal gas law in terms of Boltzmann's constant and solve related problems with variables pressure, volume, and temperature.	$4-7$
3	State and apply the stipulations of the kinetic theory of gases and solve related problems involving pressure, force, kinetic energy, Boltzmann's constant, temperature, and speed distributions of particles	$(8-13$
4	Define and apply the concept of thermal conductivity and solve related problems involving heat flow.	$14-19$
5	State and apply the first law of thermodynamics and solve cycles, P - V diagrams.	$20-26$
6	Define and describe entropy; state and apply qualitatively the second law of thermodynamics.	$27-30$

$1^{\text {st }}$ Law of Thermodynamics

Recognizing that heat is the transfer of internal energy and work is also a form of energy transfer, a useful form of conservation of energy becomes:

$$
\Delta U=Q+W
$$

where: $U=$ internal energy $Q=$ heat (into the system)
$W=$ work done on the system

$1^{\text {st }}$ Law of Thermodynamics

Recognizing that heat is the transfer of internal energy and work is also a form of energy transfer, a useful form of conservation of energy becomes:

$$
\Delta U=Q-W
$$

where: $U=$ internal energy $Q=$ heat (into the system) $W=$ work done by the system
gas Isobaric Process: pressure is constant. Work equals pressure times change in volume.

If gas is heated and pressure remains constant, volume, temperature, and internal energy all increase.
piston pushes

Work equates with area under the

 curve - signs depends on direction.

Note: in this hypothetical case the pressure is steady at atmospheric (plus a small amount related to the weight of piston).

If gas is cooled and pressure remains constant, volume, temperature, and internal energy all decrease.

Isochoric (or Isovolumetric) Process

Isochoric (or Isovolumetric) Process

Note: in this hypothetical the piston is moved slowly to allow thermal equilibrium with surroundings at all times.

Isothermal Process

Temperature is constant so
$P V=$ constant also.

Temperature and internal energy are both constant! $\Delta U=0,|Q|=|W|$

$$
Q=P_{\text {avg }} \Delta V_{0}
$$

gas Isothermal Process
pushes

Work is still area under the curve can approximate or find by $\xrightarrow{{ }^{P}}$
Volume is inversely proportional to pressure. Work done by gas equals heat gained at constant temperature.

piston
 Adiabatic Process

Heat is zero so the work done equates with a change in internal energy.

Note: in this hypothetical the piston is either thermally insulated or moved so quickly there is no time for heat to flow.

Work done on the gas equates with an increase in temperature, pressure, and internal energy as volume decreases.
gas $\uparrow \quad$ Adiabatic Process
pushes
piston:
F

As before, work equates with area under the curve.

Work done by the gas equates with an decrease in temperature, pressure, and internal energy as volume increases.

High Temperature Reservoir

High Temperature Reservoir

$$
Q_{\mathrm{in}}=Q_{1}
$$

Engine

Low Temperature Reservoir

High Temperature Reservoir

High Temperature Reservoir

High Temperature Reservoir

High Temperature Reservoir

High Temperature Reservoir

Otto Cycle

 P example: car engine
image credit: Luc1992, Wikipedia

High Temperature Reservoir

$$
Q_{\mathrm{in}}=Q_{1}
$$

Engine

$$
Q_{\mathrm{out}}=Q_{2}
$$

Low Temperature Reservoir

Brayton Cycle example: gas turbine

image credit: en.User.Duk, Wikipedia

High Temperature Reservoir

$$
Q_{\mathrm{in}}=Q_{1}
$$

Engine

$$
Q_{\mathrm{dut}}=Q_{2}
$$

Low Temperature Reservoir

Diesel Cycle example: truck engine

$$
e f f=\frac{W_{\text {net }}}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}
$$

High Temperature Reservoir

$$
Q_{\mathrm{in}}=Q_{1}
$$

Engine

$$
Q_{\mathrm{dut}}=Q_{2}
$$

Low Temperature Reservoir

Carnot Cycle maximizes efficiency

$$
\text { eff }=\frac{W_{\text {net }}}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{T_{2}}{T_{1}}
$$

image credit: Keta, Wikipedia

High Temperature Reservoir

$$
Q_{\text {out }}=Q_{1}
$$

